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Abstract

Power law-like distributions for city populations are a distinctive, recurring feature
of human settlement patterns. We propose a novel explanation for this phenomenon
that reflects the qualities of a place (fundamentals) and its ability to benefit from trade
based on its location (market access), two important forces that have not simultane-
ously been incorporated into an explanation of the city size distribution. Using ran-
dom variation in geography to model these two terms within a quantitative spatial
model results in lognormal population distributions which appear to follow a power
law for the most populous locations (i.e., cities).
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David Weinstein, Natalie Yang, and seminar and conference participants at Columbia University, the 2024
EuropeanMeeting of the Urban Economics Association, and the 2024North AmericanMeeting of the Urban
Economics Association for helpful comments and discussions. Easton acknowledges the Program for Eco-
nomic Research at Columbia University and theAlliance DoctoralMobility Grant fromColumbia University
and Sciences Po for support.

https://www.patrickwfarrell.com/files/ef_pise.pdf


1 Introduction

The most remarkable empirical regularity in spatial economics is that the upper tail of
the city size distribution appears to follow a power law. Why this regularity arises is a
question that quantitative spatial models, which form the basis of modern spatial eco-
nomics, have thus far failed to answer. While a key feature of these models is their ability
to recover the unobserved productivities and amenities1 of each location—the locational
“fundamentals”—that rationalize the observed populations, they do not explain why the
underlying locational fundamentals and market access should consistently generate the
characteristic city size distribution. By contrast, existing explanations of the appearance
of a power law are inconsistent with quantitative spatial models as these explanations ei-
ther allowno role for a location’s characteristics (Brakman et al. 1999;Hsu 2012; Rante et al.
2024), no role for a place’s interactions with other locations (Lee and Li 2013; Behrens and
Robert-Nicoud 2015), or no role for either factor to determine a city’s population (Gabaix
1999b). That is, the literature that models the forces shaping cities cannot explain the reg-
ularity of the city size distribution, while the literature explaining city size distributions
ignores the forces shaping cities.

Our paper shows that random variation in geography and trade costs can generate the
characteristic city size distribution within quantitative spatial models, linking the canon-
ical models of the spatial economy to the literature on the population distribution. We
model a location’s fundamentals as resulting from random variation in its geographic “at-
tributes,” exogenous aspects of its geography which affect locational fundamentals. Simi-
larly, wemodel a location’smarket access as resulting from randomvariation in trade costs
between locations. Locational fundamentals andmarket access, we then show, will be log-
normally distributed. Together, these will generate a lognormal population distribution
within quantitative spatial models. As a lognormal distribution approximates a power
law in the upper tail, our framework naturally generates the characteristic power law-like
city size distribution. Our key technical advance is to demonstrate that random variation
generates a lognormal distribution for market access. This advances prior work, in par-
ticular Lee and Li (2013), that has used many random “factors” to generate lognormally
distributed fundamentals in a model without trade.

Within the Allen and Arkolakis (2014) quantitative spatial framework, we show that
the population of each location can be expressed as the product of two terms. One term
represents that location’s market access and is written as a trade cost-weighted sum over

1Productivities are output shifters in production functions. Amenities are utility shifters that affect the
utility one earns at a certain real wage.

1



all locations. The other term solely reflects that location’s fundamentals, which are a func-
tion of its attributes. Our major contribution is to characterize the distributions of both
the fundamentals and the trade costs influencing market access resulting from random
geographic variation, and we accomplish this in two steps. First, we incorporate insights
form the prior literature andmodel the locational fundamentals within a quantitative spa-
tial model as multiplicative aggregates of randomly distributed locational attributes. As
multiplicative processes are additive in logs, the locational fundamentals will also be log-
normally distributed by a central limit theorem. Second, we provide a novel proof for
the distribution of our market access term, applying a result from Marlow (1967) about
central limit theorems for sums of positive random variables. We apply this result to the
market access summation to demonstrate that the market access terms will also be lognor-
mally distributed. The population distribution, a product of these two lognormal terms,
will thus be lognormally distributed.

The separation of the explanation into twoparts has attractive economic interpretations
because there is substantial empirical evidence that both a place’s characteristics and its
location in space influence its population. Within quantitative spatial models, the former
is reflected by a location’s fundamentals and the latter by its market access. Our paper is
the first to show how these forces jointly produce the distinctive population distribution.
This result holds even allowing for other important economic forces captured by these
models, such as agglomeration and congestion externalities, to influence the population.

We show that an inversion of the Allen and Arkolakis (2014) model using data for
the United States results in lognormally distributed fundamentals and market access, as
predicted by our theory. We then simulate a quantitative spatial model to test our frame-
work’s robustness and ability to match results in the theoretical and empirical literatures.
We show that differences in local productivity spillovers, intra-city congestion externali-
ties, and inter-city transportation costs can explain variation in the city size distribution
observed in data. We find that as agglomeration benefits rise the size distribution becomes
more unequal, consistent with observed changes to the U.S. city size distribution (Gabaix
and Ioannides 2004). Increasing inter-city transportation costs also results in a more un-
equal city size distribution. This provides a potential explanation for the very large “pri-
mate” cities and unequal city size distributions of developing countries, where domestic
transportation costs are often much higher than in developed countries (Teravaninthorn
and Gaël 2009; Atkin and Donaldson 2015).

Our paper touches on several branches of the spatial economics literature. Many the-
oretical explanations of the city size distribution are based on the similarly striking em-
pirical observation that city growth rates often appear unrelated to city population, such
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as Gabaix (1999a), Gabaix (1999b), Blank and Solomon (2000), Eeckhout (2004), Rossi-
Hansberg andWright (2007), and Córdoba (2008).2 However, the assumption of random
growth is inconsistent with the empirical evidence on the distribution of cities in signif-
icant ways. The growth of cities does not appear random in many important cases, par-
ticularly following major shocks.3 Random growth explanations also fail to capture the
influence of the characteristics of a place on the attractiveness of producing or residing
there, implying that the large populations of New York City, Tokyo, and London are ran-
dom and unrelated to their advantageous geographies. These theories are also aspatial
and do not allow for interactions between different locations to shape settlement patterns,
failing to capture the contribution of trade to the scale of the aforementioned global cities.4

There are papers within the literature on city size distributions that have accounted
for either the role of a place’s characteristics or its location in determining its population,
but our paper is the first to include these important forces simultaneously. Papers that
do account for the importance of geography or fundamentals, such as Lee and Li (2013)
and Behrens and Robert-Nicoud (2015), have lacked trade between locations. In contrast,
those papers which account for the importance of trade and market access, such as Brak-
man et al. (1999), Hsu (2012), and Rante et al. (2024), are models that do not allow for
variation in the characteristics of locations. By placing our explanation for the distribu-
tion’s emergence within a quantitative spatial model, we can include roles for both local
characteristics and trade between locations. Further, given the properties of quantitative
spatial models, we also demonstrate that population distributions will exhibit random
growth in equilibrium in response to increases in the aggregate population level. This
provides consistency with the observation of random growth in many contexts that moti-
vated prior models.

By integrating the literature on population distributions with that on quantitative spa-
tial models, we show the conditions under which these models generate the characteristic
city size distribution. Models of the spatial economy, beginning with Krugman (1991),
Helpman (1998), and Fujita et al. (1999), highlight the roles of space, local spillovers, and

2Random growth is often referred to in the literature as Gibrat’s law. The “law” is an application of the
central limit theorem to the log of the product of independent shocks, originally formulated to describe the
growth of firms (Gibrat 1931).

3Notable instances of recovery from shocks are documented in Davis and Weinstein (2002), Brakman
et al. (2004) and Davis and Weinstein (2008) following bombings, and in Johnson et al. (2019) following
pandemics. Desmet and Rappaport (2017) also document the absence of the random growth phenomenon
for cities during the settlement of the American West.

4New York City is located on one of the largest natural harbors on Earth and its much greater population
relative to Lost Springs, Wyoming—the 2020 population ratio was 8,804,190 to 6—is likely related to New
York’s favorable geography and the benefits of its location for trade. Some attributes of landlocked Lost
Springs include its low annual precipitation and a coal mine which last operated in the 1930s.
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the importance of trade between locations in determining population distributions. The
spatial literature is now based on quantitative spatial models as developed in Allen and
Arkolakis (2014), Redding (2016) andRedding andRossi-Hansberg (2017). The literature
on quantitative spatial models suffers frommuch the opposite problem than that afflicting
the literature on the city size distribution. While quantitative spatial models incorporate
many of the forces that influence the size of cities, they do not explain the regularity of the
population distribution. These models can recover the unobserved qualities of each lo-
cation, their “fundamentals,” which rationalize observed populations. Yet this inversion
is possible for any arbitrary vector of “populations,” even those with little resemblance
to real-world population distributions.5 We demonstrate how both heterogeneity in the
attributes of different places and trade across space will generate lognormal population
distributions in equilibrium as a result of random variation in geography. Thus, we show
how the models within this literature can be used to provide a deep explanation for why
the population tends to be distributed in a particular way within countries. As our result
relies solely on variation in geography and applications of a central limit theorem within
these models, its simplicity and generality can explain the consistent observation of this
phenomenon in many contexts.

Our framework also provides a strong theoretical link between observable characteris-
tics of the world and market access, which a broad literature demonstrates are important
for local populations, and the characteristic shape of the city size distribution. The largest
cities around the world tend to be in locations that are good for production, offer quality-
of-life benefits to residents, and offer the opportunity to trade with other locations. The
literature has found a large role for “first-nature” geographic characteristics in explaining
local populations, as in Rappaport and Sachs (2003), Nordhaus (2006), Nunn and Puga
(2012), Henderson et al. (2018), Bosker and Buringh (2017), and Alix-Garcia and Sellars
(2020). Literature supporting the importance of market access and trade for determin-
ing populations and incomes includes Redding and Venables (2004), Redding and Sturm
(2008) and Head and Mayer (2011). Further, basing the origin of the population distri-
bution on slow-changing geography can explain the persistence and resilience of the city
size distribution to negative shocks.6

The paper proceeds as follows. Section 2 argues that populations are best described by
a lognormal distribution and establishes the link between this distribution and the appear-

5Adão et al. (2023) make a similar point, noting that modern spatial models are saturated with free
parameters such that they are always able to exactly match the underlying data.

6Davis and Weinstein (2002) propose geography as a likely determinant of the population distribution,
given the recovery of the cities to their prior place in the population distribution following devastating
bombings.

4



ance of a power law for cities. Section 3 presents a standard quantitative spatial model and
shows that, given the structure of the equilibrium condition, a lognormal population dis-
tribution results from both trade across space and random variation in geography within
places. Section 4 demonstrates that the model captures several results in the empirical
literature on city size distributions via simulation. Section 5 concludes.

2 Seeing a Power Law in Populations

The appearance of a power law-like distribution for city populations is a well-documented
feature of human geography. As articulated in Gabaix (1999b), the regularity of its ap-
pearance across countries, the definition of a “city,” and time means it can reasonably be
held as a minimum criterion for a model of cities. This distribution is typically illustrated
with a simple plot and accompanying regression. For some truncation of the population
distribution to include only themost populous locations (“cities”), the plot of the log pop-
ulation rank of a city and the log population of the city often appears strikingly linear and
regression given by:

ln(city ranki) = θ0 + θ1 ln(city popi) + ϵi (1)

for many countries delivers a high R2 and frequently an estimate for θ1 near -1. This slope
is characteristic of a specific power law referred to as Zipf’s Law, which can be stated as the
largest city in a given country being n times the size of the nth-largest city, and the frequent
appearance of this “law” motivated a substantial literature seeking to explain its origin.
Interpreting this regression as describing the true city size distribution would mean that
city populations follow a Pareto distribution with shape parameter αP = 1 and minimum
city size xm, reflecting the choice of truncation point.7

Instead of being a true power law, the city size distributionmay result from cities being
a subset of a full population distribution which appears similar to a Pareto distribution for
tail observations. Eeckhout (2004) demonstrates that the full population distribution for
the U.S. appears lognormal. We construct an update to one of the key figures of Eeckhout
(2004) in Figure I, which shows that this continues to hold for the U.S. in 2010. The left
panel shows a histogram of log population, which closely matches the overlaid normal
distribution matching the mean and standard deviation of the empirical distribution, and
the right panel shows close fit to the normal distribution in a quantile-quantile (QQ) plot.

7The estimate of θ1 = −1means the power law is such that for sizeX , the probability that a city is larger
than X is proportional to 1

X . A Pareto distribution with shape parameter αP = 1 and minimum city size
xm gives the necessary P (x > X) = xm

X , which is the Pareto counter-cumulative distribution function for
this αP . The link between the (log) rank-size plot and the Pareto distribution is established in more detail
in Gabaix (2009).
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Figure I:
Lognormal Populations Appear to Follow A Power Law in the Tail
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Notes: The populations of U.S. Incorporated and Census Designated Places (N = 31,430) appears to follow
a lognormal distribution. The right tail of this distribution (N=1000) appears to follow a power law. Data
Source: U.S. Census

The tail of a lognormal distribution often appears similar to a Pareto distribution, which
can be understood by considering the lognormal PDF:

f(x) =
1

xσ
√
2π

exp

(
−(ln(x)− µ)2

2σ2

)
(2)

After some algebra (given in Supplemental Appendix A.1), this can be rewritten as:

f(x) = ΓLNx
−α(x)−1 (3)

where ΓLN = 1
σ
√
2π

exp
(
− µ2

2σ2

)
and α(x) = ln(x)−2µ

2σ2 . Contrast this with the density function
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of a Pareto distribution:
j(x) = ΓP x

−αP−1 (4)

where ΓP = αPx
αP
m and the minimum city population is denoted xm. The lognormal PDF

in Equation 3 is similar to the Pareto density function in Equation 4, but with a scale-
varying “shape parameter”-like term. As Malevergne et al. (2011) show, provided the σ
parameter is not too small, the value α(x) takes in the right tail will be stable over much
of the tail distribution as α(x) grows logarithmically in x.

The Pareto interpretation of the tail of the population distribution appears dominant
in the literature despite its limitations and the strict assumptions it necessitates. First, the
Pareto distribution is taken to apply to only a subset of large settlements and not the full
population distribution. This requires truncating a data series with no obvious trunca-
tion point. Early studies were limited to only the largest cities or settlements because of
the comparative ease of accessing population counts for the largest places.8 With more
complete data on population distributions, the choice of a truncation point to support the
Pareto interpretation becomes critical and there is no widely accepted method for deter-
mining such a cutoff. Many researchers rely on a visual test of the data to determine a
cutoff (Gabaix 2009). Second, beyond the need to truncate the data to fit a Pareto distribu-
tion, models generating a Pareto population distribution must rely on strong assumptions
regarding city growth dynamics. For example, Gabaix (1999b) obtains a Pareto distribu-
tion by assuming that cities cannot fall below a certain minimum size such that the oth-
erwise random growth process is “reflected” at the lower bound. Third, the systematic
deviations of the far right tail below the Pareto distribution observed in many countries
(evident in Figure I for the U.S.) are very large in magnitude, which is obscured by the
log-log scale. In Supplemental Appendix B, we show that the estimated Pareto exponent
implies a cumulative absence of nearly 76million people from the 250 U.S. MSAs in Figure
I in expectation, roughly a quarter of the U.S. population.9

The lognormal interpretation’s attractive properties stand indirect contrast to the short-
comings of the Pareto. The lognormal distribution appears to fit both the body of the
population distribution as well as the right tail, obviating the need for arbitrary trunca-
tion. Further, the scale-varying “shape parameter”-like term of the lognormal (as shown

8This is true of early work, such as Auerbach (1913) and Zipf (1949). While Auerbach had data on many
small settlements, a table in his paper includes just the 94 largest; see the recent translation in Auerbach and
Ciccone (2023). Evenmore recent investigation of Zipf’s Law in Krugman (1996), for instance, included just
the top 135 cities as the Statistical Abstract of the United States included only those cities (Eeckhout 2004).

9Alternative estimates of the power law based on different truncation points imply asmany as 500million
“missing” people in the largest U.S. MSAs, substantially more than the entire U.S. population, which we
discuss in Supplemental Appendix B.

7



in Equation 3) can explain commonly observed deviations in real-world city size distribu-
tions. The likelihood of very large cities is lower when the true distribution is lognormal
than for a similar Pareto, because the scale-varying “shape parameter”-like term is increas-
ing in x. This appears to match the global city distribution (Rossi-Hansberg and Wright
2007), as the largest cities inmost countries tend to fall below the slope of the fitted regres-
sion line.10 Other features of real-world population distributions, such as the sensitivity
of the estimated slope to the choice of truncation point, are consistent with the lognormal
distribution as well.11

The appearance of a power law-like city population distribution is likely the result of
focusing on the tail of a lognormal full population distribution. Such an interpretation
requires fewer restrictive assumptions and appears to better fit the observed data, both
in the body of the population distribution (which is necessarily ignored by the Pareto
interpretation) and in the tail (which behaves more lognormal than Pareto).

3 Lognormal Populations in Spatial Models

We now describe a canonical quantitative spatial model within which we demonstrate
our key result. We use a discretized version of the model in Allen and Arkolakis (2014),
which nests the canonical class of spatial models, and show that a realistic modeling of
geography and trade will lead to lognormal population distributions in equilibrium.12

3.1 A Quantitative Spatial EquilibriumModel

The world consists of locations indexed by i ∈ N , where N = {i | i ∈ Z2, (−N,−N) ≤
i ≤ (N,N)} where N ∈ N determines the extent of the plane. Trade between different
locations is costly. We assume that locations have symmetric iceberg trade costs drawn
from some distribution with finite support, such that τi,i = 1, τs,t > 1 for s ̸= t, τs,t = τt,s,

10Proponents of the Pareto interpretation have attempted to accommodate this divergence by arguing that
the forces acting on small cities are different from those acting on large cities, generating different power laws
for different sizes of cities. A lognormal distribution naturally exhibits this deviation without the need to
treat subsets of the distribution differently. We provide a further discussion of the scale variance of the
lognormal distribution and its contrast with the Pareto distribution in Supplemental Appendix B.

11This property is discussed at length in Eeckhout (2004) and demonstrated in Supplemental Appendix
Figure A.II where we expand or reduce the number of cities relative to Figure I. The sensitivity to the trunca-
tion point and the lack of a reliable rule for truncating the distribution suggest that the frequently estimated
-1 exponent is unlikely to be ameaningful feature of the data. For some truncation of tail observations drawn
frommany lognormal distributions, the log-rank log-population plot will appear to take a slope of -1 as the
exponent in Equation 3 diverges smoothly.

12TheAllen andArkolakis (2014)model is based on the two locationmodel presented inHelpman (1998),
generalized to an arbitrary number of locations.
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and trade costs between any pair of locations s, t ∈ N are bounded above by a positive
number.

The “distance” between locations is defined using the Euclidean norm such that di,j =
||i − j||. Distance is distinct from trade costs. Nearby location, in terms of their distance,
will tend to be similar (in a sense to bemademore precise in the following section) because
of spatial correlation in geography, while trade costs can vary independently of distance
to reflect varied geographies, trade routes linking certain locations (navigable rivers, rail-
ways, roads, etc.), or other idiosyncratic barriers to trade between locations.

Each location has an exogenous productivity fundamentalAi and an exogenous amenity
fundamental Ui, both of which are strictly positive, real-valued random variables drawn
from some probability distribution. We discuss the fundamentals further later in this sec-
tion, where we argue that these should reflect variation in the geographic attributes of a
place and the spatial correlation patterns of attributes across space. A location’s effective
productivity and amenity value may also be affected by negative or positive externalities
due to the local population Li. We define the “composite fundamentals” as:

Ãi = AiL
α
i (5)

Ũi = UiL
β
i (6)

where the typical case will consist of α > 0 and β < 0, reflecting positive productiv-
ity spillovers from agglomeration and the negative impact of overcrowding on amenities.
Geography within this model is represented by the set of functions defining the locational
fundamentals, Ãi and Ũi, along with the trade costs function τ defining the spatial rela-
tionship between locations in the model.

Wemake theArmington assumption that each location produces a differentiated good.
There is a population of homogeneous workers L̄ ∈ R++ who can freely move to any
location. Workers have common constant elasticity of substitution preferences over goods
in their welfare function given by:

Wi =

(∑
n∈N

q
σ−1
σ

n,i

) σ
σ−1

Ũi (7)

where Ũi is the composite amenity fundamental of location i and qn,i denotes the total
consumption in i of the goodproduced inn and σ > 1 governs the elasticity of substitution.

Production is perfectly competitive.13 Aworker in location i can produce Ãi units of the
13As demonstrated in the appendix to Allen and Arkolakis (2014) the model nests cases of monopolistic
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local differentiated good, where Ãi is the composite productivity fundamental of location
i. The number of workers and wages in a location are given by the functions L : N → R++

and w : N → R++.14

Based on the CES assumption, we can write the amount of each good produced in any
location i consumed in location n as:

qi,n = Qn

(
pi,n
Pn

)−σ

(8)

where Qn is aggregate consumption in n, Qn = wnLn

Pn
, and Pn is the price index in location

n, given by:

Pn =

(∑
i∈N

p1−σ
i,n

) 1
1−σ

(9)

Given the assumption of perfect competition the price of the good produced in i consumed
in n, can be expressed as:

pi,n =
τi,nwi

Ãi

(10)

Combining the quantity (Equation 8) and price (Equation 10) expressions, we can write
the value of the good produced in i consumed by n as:

Xi,n =

(
τi,nwi

ÃiPn

)1−σ

wnLn (11)

By the CES assumption we can express the welfare of a worker in each location as:

Wi =
wi

Pi

Ũi (12)

The total income in a location must be equal to the value of production:

wiLi =
∑
n∈N

Xi,n (13)

The labor market clears: ∑
n∈N

Ln = L̄ (14)

We can then combine the welfare expression (Equation 12), value of consumption expres-

competition.
14No location will be unpopulated or offer zero wages in equilibrium given the range of parameters we

consider.

10



sion (Equation 11), and income expression (Equation 13) to get:

Liw
σ
i =

∑
n∈N

W 1−σ
n τ 1−σ

i,n Ãσ−1
i Ũσ−1

n Lnw
σ
n (15)

Thewelfare expression (Equation 12) combinedwith the price index and andprices (Equa-
tions 9 and 10) yields:

w1−σ
i =

∑
n∈N

W 1−σ
i τ 1−σ

n,i Ã
σ−1
n Ũσ−1

i w1−σ
n (16)

Given the form of the externalities in Equations 5 and 6, free movement between locations
which ensures worker welfare is equal in all locations (Wi = W̄ for all i), and symmetric
trade costs we can combine Equations 15 and 16 into a single equation given by:

Lσ̃γ1
i = W̄ 1−σA

σ̃(σ−1)
i U σ̃σ

i

∑
n∈N

τ 1−σ
n,i U

σ̃(σ−1)
n Aσ̃σ

n

(
Lσ̃γ1
n

) γ2
γ1 (17)

where:
σ̃ =

σ − 1

2σ − 1
, γ1 = 1− α(σ − 1)− βσ, γ2 = 1 + ασ + (σ − 1)β

The existence and uniqueness of the equilibrium, and a mechanism for finding it, are
established in Allen and Arkolakis (2014) when γ2

γ1
∈ (−1, 1] (the discrete case is con-

sidered in their online appendix). We focus on this part of the parameter space in our
simulated results, which occurs when α + β ≤ 0 and is the empirically relevant case, but
our result does not depend on this inequality. For any realization of fundamentals and
trade costs we thus can recover a unique vector of populations.

In the following subsections we demonstrate that the equilibrium population within
this model will be lognormally distributed given a realistic modeling of the fundamentals
and trade costs based on variation in geography. We begin by rewriting Equation 17 in
terms of the population in each location i in simplifying notation as:

Li = Fi ×M
1

σ̃γ1
i (18)

where Fi =
(
W̄ 1−σA

σ̃(σ−1)
i U σ̃σ

i

) 1
σ̃γ1 , which we refer to as the “own-fundamental” term

as it consists only of location i’s fundamentals and the common positive constant W̄ , and
Mi =

∑
n∈N mn,i withmn,i = τ 1−σ

n,i U
σ̃(σ−1)
n Aσ̃σ

n Lσ̃γ2
n , which we refer to as the “market access”

term of location i as it is a trade cost-weighted sum over all locations n ∈ N . Each term
mn,i of this summation thus represents the contribution of location n to the market access
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of location i.
We now demonstrate that, given a realistic modeling of variation in geography across

space and within a place, both the own-fundamental and market access terms for all lo-
cations will be lognormally distributed. This will allow us to show that the equilibrium
population also follows a lognormal distribution.

3.2 Variation within Place and the Distribution of Fundamentals

Wemodel fundamentals as resulting from random shocks via the geographic attributes of
a location, building on the approach of Lee and Li (2013) who similarly model a location’s
quality as resulting frommany random “factors.” We reframe their approach as modeling
fundamentals as arising fromgeographic variation. Further, using randomvariation in ge-
ography tomodel locational fundamentals is the cross-sectional analog of random growth
models based onGibrat’s law over time, like those of Gabaix (1999a) and Eeckhout (2004),
where rather than productivity shocks occurring over time each attributewithin a location
contributes a productivity or amenity shock to the respective fundamental.

There is clear evidence for observable geographic attributes, alone and in combination,
playing a role in shaping human settlement patterns (Henderson et al. 2018). The substan-
tial differences between areas of high population in terms of many geographic attributes
suggests that no one particular observable attribute alone is a sufficient proxy for what
makes a location good for human habitation, and that many attributes should contribute
to the quality of a place.

Each location i has many geographic attributes aig, which are indexed by g ∈ G, where
G = {g | g ∈ N, 1 ≤ g ≤ G}. Attributes for a productive location could be fertile soil,
regular and mild weather patterns, and favorable topography, among many others. We
assume all attributes are strictly positive in value and for any g, higher values of aig reflect
better realizations of that attribute.15 We also assume each individual attribute is drawn
from a common distribution in all locations, while different attributes may differ in their
respective distribution.

We focus our discussion on productivity fundamentals, as we define the amenity fun-
damentals in the same way. The locational productivity fundamental for a location i, de-
noted Ai, should be a function of its many attributes such that Ai = FA(ai1, ai2, ..., aiG).
This function should be increasing in each aig, to reflect that better attributes increase
productivity, such that ∂FA

∂aig
> 0 for all g ∈ G. Further, the aggregating function should

15These should not be thought of as being measured in the familiar units for each attribute. Rainfall
in inches has a nonlinear relationship with agricultural output, for instance. We instead want a measure
reflecting how positive the “shock” from a given attribute is.
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exhibit complementarities between each of the attributes. That is, the benefit of having
reliable rainfall for production is increased when there is better arable land in a location,
for instance. This means the aggregating function also needs a positive cross-partial for
all arbitrary combinations of attributes, such that ∂2FA(·)

∂aij∂aig
> 0, for j, g ∈ G, j ̸= g.

Consistent with these assumptions, we can view the contribution of attributes to the
fundamental as representing multiplicative shocks. We assume a Cobb-Douglas form for
the aggregating function FA, consistent with the requirements outlined above. The vary-
ing importance of different attributes can be reflected by the exponents ξg > 0 associated
with each g:16

Ai =
∏
g∈G

aig
ξg (19)

Taking the natural log yields the following expression:

ln(Ai) =
∑
g∈G

ξg ln aig (20)

where we express the logged fundamental in location i as a sum of random variables
ξg ln aig.

It is possible that some attributes aig are not independent within locations. For exam-
ple, high July temperatures and the number of growing days may be correlated within
places such that knowing the realization of one is informative about the likely values of
the other. However, over the large number of attributes of a place there do appear to ex-
ist pairs of attributes which appear nearly independent within locations (e.g., topography
and rainfall), as we demonstrate in Supplemental Appendix C.4 using data on geographic
attributes from Henderson et al. (2018).

Many modern central limit theorems allow for precisely this type of asymptotic inde-
pendence. The formal assumption we must impose in order to apply a central limit theo-
rem is that the sequences must be α-mixing for each i ∈ N . This concept, also referred to
as “strong mixing” or “weak dependence,” was introduced to the spatial literature in Lee
and Li (2013). A formal definition of α-mixing for sequences is given below. The concept
requires that all events defined on arbitrary subsets of an α-mixing sequence approach
independence as the “distance” between the subsets increases, where distance is reflected
in the index of the sets. This concept is often used in the analysis of time series, where the
index reflects the timing of the observation and imposes a natural concept of the distance

16We could also include an index for the time t, to allow for attributes aigt to vary over time and to vary in
their importance over time ξgt, which could capture structural transformation of the economy or changing
production technologies at time t. In this case, Ait =

∏
g∈G aigt

ξgt where the fundamentals can vary with t.
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between elements of the sequence.

Definition 1, α-mixing (sequences): Suppose X := (Xk, k ∈ Z) is a (not necessarily station-
ary) sequence of random variables. For −∞ ≤ J ≤ L ≤ ∞, define the σ-field

FL
J := σ (Xk, J ≤ k ≤ L(|k ∈ Z) .

The notation σ(. . .) means the σ-field ⊂ F generated by (. . .). Define:

α
(
F j

−∞,F∞
j+n

)
= sup

A∈FJ
−∞,B∈F∞

j+n

|P(A ∩B)−P(A)P(B)|.

For each n ≥ 1, define:
α(n) := sup

j∈Z
α
(
F j

−∞,F∞
j+n

)
,

The random sequenceX is said to be ”strongly mixing” (or ” α-mixing”) if α(n) → 0 as n→ ∞.

We assume that attributes satisfy these properties and are α-mixing within locations.
Lemma 1 is a central limit theorem for α-mixing sequences due to Herrndorf (1984). It
allows us to demonstrate convergence of a sum over a sequence of non-i.i.d random vari-
ables to a normal distribution, provided asymptotic independence (α-mixing) and other
moment conditions for the sequence.

Lemma 1 (Herrndorf 1984): Let {xi} be an α-mixing sequence of random variables satisfying
the following conditions:

i. E[xi] = 0,∀i

ii. limn→∞
E[(

∑n
i=1 xi)

2]
n

= σ̄2, 0 < σ̄2 <∞

iii. supi∈N E[xbi ] <∞, for some b > 2

iv.
∑∞

s=1(αs)
1− 2

b <∞

Let Xn =
∑n

i=1 xi. Then as n → ∞, 1√
nσ̄
Xn converges in distribution to the standard normal

distribution.

The proof of Lemma 1 is given in Herrndorf (1984), and discussion of the conditions
is given in Lee and Li (2013).

We define the ordering of the sequence of attributes {ai1, ai2, ..., aiG} such that similar
attributes are close together (July temperatures and growing days have indices near each
other), while independent attributes differ greatly in their index values (rainfall and to-
pography have indices set far apart). Together with further restrictions, given in Lemma
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1, on the moments of the random variables ξg ln aig and the rate of α-mixing, which de-
termines how rapidly the elements of the sequence approach independence, we apply the
central limit theorem in Lemma 1 to characterize the distribution of each lnAi.

Proposition 1: Define ◊�ξg ln aig = ξg ln aig − E[ξg ln aig] for all g ∈ G and i ∈ N , and define‘lnAi =
∑

g∈G
◊�ξg ln aig and σ

(‘lnAi

)2
= V ar[‘lnAi] for all i ∈ N . If the sequences {◊�ξg ln aig} are

α-mixing and fulfill the conditions of Lemma 1 for all i ∈ N , then as G → ∞, 1√
Gσ(’lnAi)

‘lnAi

converges in distribution to the standard normal distribution for all i ∈ N .

Proposition 1 follows from Lemma 1. By Proposition 1, as the number of attributes
grows large, the log productivity fundamental lnAi will converge in distribution to a nor-
mal distribution and so Ai will converge in distribution to a lognormal distribution. We
assume that, for a large number of attributes, Ai will be lognormally distributed based on
this asymptotic argument.

The amenity fundamental is defined similarly, but we allow for different weights as the
attributes most relevant for determining quality of life may differ from those influencing
productivity. The log of the amenity fundamental, which has weights given by ιg > 0, is:

ln(Ui) =
∑
g∈G

ιg ln aig (21)

and, given the same conditions as on the productivity fundamental, will also converge in
distribution to a lognormal as the number of attributes grows large.

We provide support for the appearance of a lognormal distribution for fundamentals
in two ways. First, the fundamentals recovered by inverting the model in Allen and Arko-
lakis (2014), plotted in Supplemental Appendix C.6, appear lognormal for U.S. counties.
Second, we use the Henderson et al. (2018) data on attributes and, following our model-
ing assumptions, calculate a “naive” fundamental by applying our aggregating function.17

The plots are reported in Supplemental Appendix C.6, and show that aggregating the
eleven attributes results in a distribution of fundamentals that appears lognormal. While
only suggestive, both the strategy of recovering fundamentals within a structural model
based on true populations and the construction of a “naive” fundamental from attributes
result in strikingly lognormal distributions.

Given lognormally distributed productivity and amenity fundamentals Ai and Ui, we
can show that the “own-fundamental” term Fi for each location i will be lognormally

17We say the fundamental is “naive” in the sense that we do not know the appropriate weights or scaling
of the attributes. The construction of the fundamental is discussed in Supplemental Appendix C.5. A similar
exercise was earlier done by Behrens and Robert-Nicoud (2015) for U.S. MSAs.
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distributed.

Proposition 2: If Ai and Fi have a bivariate normal distribution in logs, Fi will be lognormally
distributed.

Proposition 2 follows immediately from the properties of lognormals, as either raising
a lognormal distribution to a power or multiplying by a positive constant begets another
lognormally distributed random variable and multiplying two lognormal random vari-
ableswhich have a bivariate normal distribution in logs also results in another lognormally
distributed random variable.

3.3 Variation over Space and the Distribution of Market Access

We now demonstrate that the distribution of the market access term, which is a summa-
tion over positive random variables, converges in distribution to a lognormal. This result
follows from the application of a central limit theorem that allows for a particular type of
dependence structure across elements of the summation that is likely to hold in spatial
contexts and a useful lemma due toMarlow (1967) for sums of positive random variables.

The market access term for each location i given by Mi =
∑

n∈N Mn,i, consists of a
summation over the random variables mn,i, each a function of the random variables τn,i,
An,Un, andLn, for alln ∈ N .18 Many central limit theorems apply only to independent and
identically distributed random variables, but the sequences given by {mn,i} are unlikely
to consist of independent random variables. The fundamentals of a location are intended
to reflect its geographic advantages, and geographic attributes (topography, rainfall, soil
quality, and so on) will tend to be similar for nearby locations. This means it is possible
for productivity and amenity fundamentals Ai and Ui as defined in the prior section to be
similar for nearby locations and exhibit spatial correlation.

However, as the distance between locations increases, the similarity of attributes across
locations falls. In Supplemental Appendix C.4 we provide evidence for this pattern of
spatial correlation based on the geographic attributes data in Henderson et al. (2018).
Nearby locations often have broadly similar geographic attributes, like the climatic sim-
ilarities of New York City and northern New Jersey, but this spatial correlation declines
with distance such that New York City is quite dissimilar from both Monterrey, Mexico,
and Nuuk, Greenland.19 As such, we assume that while fundamentals may be similar for
nearby locations they may also differ substantially over greater distances.

18In Supplemental Appendix A.4, wemotivate the treatment ofmn,i and Ln as random variables, because
each Ln is an element of a random sequence corresponding to the eigenvector of a random matrix.

19Nuuk and Monterrey are roughly equidistant from New York City, both at a distance of 1,850 miles.
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In our setting, we also have a natural concept of distance, dn,i. We can re-index the
elements of the sequence {mn,i} in terms of distance by defining for each i an alternative
sequence ordered by distance from i, {md

j,i}, where md
1,i = mi,i (at a distance of 0) is fol-

lowed by locationsmd
2,i capturing locations at the nearest distance ( of 1, with ties broken

arbitrarily), and so on. Note that as the sequences {md
j,i} are simply a re-indexing of the

sequences {mn,i}, Mi =
∑

n∈N mn,i =
∑

j∈N md
j,i for all i ∈ N . We assume that the se-

quences {md
j,i} are α-mixing for all i ∈ N to reflect asymptotic independence with respect

to distance.
An additional property of the summations Mi allows us to move from a central limit

theorem in levels to one in logs, which will allow us to characterize the distribution of
Mi as lognormal. Each mn,i must be strictly positive, as An, Un, τn,i, and Ln are all strictly
positive and so mn,i = τ 1−σ

n,i U
σ̃(σ−1)
n Aσ̃σ

n Lσ̃γ2
n > 0. This allows us to apply a useful lemma

from Marlow (1967), which provides conditions under which a lognormal distribution
may appear from a summation of positive random variables:

Lemma 2 (Marlow 1967): Let {Xn} be a sequence of positive random variables. Suppose there
exist sequences of positive real numbers {an} and {bn}, and a distribution F such that

i. At each point of continuity of F , limn→∞ P
{

Xn−an
bn

≤ x
}
= F (x)

ii. limn→∞

(
bn
an

)
= 0

Then at each point of continuity of F , limn→∞ P
{(

an
bn

)
ln
(

Xn

an

)
≤ x

}
= F (x)

The proof of Lemma 2 is given inMarlow (1967). Condition (i) can reflect convergence
under a central limit theorem (such as Lemma 1), where F (x) is the standard normal
distribution and the sequences an and bn are the mean and standard deviation of some
Xn resulting from a sum of random variables. Condition (ii) then necessitates that the
coefficient of variation (the ratio of the standard deviation to the mean) of Xn is zero in
the limit as n grows large. Many sums of positive randomvariables fulfill this requirement
and examples are given in Supplemental Appendix A.2.

Lemma 2 allows us to apply a central limit theorem to the sumMi for all i ∈ N , pro-
vided the sequences {md

n,i} fulfill the requirements of the lemma. For a sum that satisfies
the conditions for a central limit theorem and condition (ii), Lemma 2 states that the given
normalization of the sum will converge in distribution to a lognormal random variable.20

20We discuss Lemma 2 further in Supplemental Appendix A.2. Beyond the context in which we apply the
Marlow (1967) lemma, it appears to have broad usefulness within economics. For example, a CES aggrega-
tor over positive random variables fulfilling the conditions of the lemma should approach lognormality as
the lognormal distribution is preserved over exponentiation.
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Lemma 2 is crucial for understanding the population distribution within many spatial
equilibrium models, as these models often incorporate a notion of “market access” via
a trade cost-weighted sum over all locations. All of the elements of these sums must be
strictly positive, and provided these fulfill the conditions necessary for applying a central
limit theorem and Lemma 2 the distribution of these “market access” terms will approach
a lognormal distribution as the number of locations grows large. We state this result in
Proposition 3.

Proposition 3: For each i ∈ N , define the sequences {md
1,i,m

d
2,i, ...m

d
N,i} and the demeaned

sequences {m̂d
n,i} such that E[m̂d

n,i] = 0 for all n ∈ N . Define M (N)
i =

∑N
n=1m

d
n,i, µ

(N)
i =∑N

n=1 E[md
n,i], and σ

(
M

(N)
i

)2
= V ar[M

(N)
i ]. If, for all i,

i. The sequences {m̂d
1,i, m̂

d
2,1, ...m̂

d
N,i} are α-mixing and fulfill the conditions in Lemma 1

ii. The coefficients of variation associated with the sequences {M (1)
i ,M

(2)
i , ...,M

(N)
i } fulfill con-

dition (ii) of Lemma 2 as N → ∞

then the distribution of µ
(N)
i√

Nσ
(
M

(N)
i

) ln
(

M
(N)
i

µ
(N)
i

)
converges in distribution to a normal distribution

for all i as N → ∞.

The proof follows directly from Lemma 1 and Lemma 2. Lemma 1 allow us to apply an
α-mixing central limit theorem to the sumMi, and Lemma 2 allows us to move to a central
limit theorem in logs as all elements of this sum are positive. If the necessary assumptions
onmn,i hold, the market access summationMi converges in distribution to a lognormal as
N grows large. As a lognormal raised to a power results in another lognormal distribution
each (Mi)

1
σ̃γ1 will converge in distribution to a lognormal distribution as N grows large.

It is important to note that this property of market access is not specific to the Allen
and Arkolakis (2014) model. Any setting where market access is modeled as consisting
of a summation over many locations should have this property, as market access will nec-
essarily be made up of positive contributions from the incomes and populations of many
locations.

3.4 The Distribution of the Population

We have now shown that Fi and (Mi)
1

σ̃γ1 are lognormally distributed when realistically
modeled to reflect variation in geography and trade costs over space. Using this, we can
then show that the population will be lognormally distributed as population in each loca-
tion i is given by Li = FiM

1
σ̃γ1
i . This result is given in Theorem 1.
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Theorem 1: If Fi and M
1

σ̃γ1
i have a bivariate normal distribution in logs for all i ∈ N , then Li

follows a lognormal distribution for all i ∈ N .

The proof follows directly from the lognormality of Fi andM
1

σ̃γ1
i , and the property that

products of lognormal distributionswhich have a bivariate normal distribution in logs also
follow a lognormal distribution. Additional technical details regarding the ergodicity of
the population distribution are worked out in Appendix A.3.

4 Results

We now verify that the modeling assumptions are reasonable by recovering fundamen-
tals by inverting the model on US data. The recovered fundamentals are lognormally
distributed, supporting the modeling assumptions we made for these fundamentals and
resulting in lognormal own-fundamental terms. The empirical market access terms we
construct based on the theory and these recovered fundamentals are also lognormally
distributed, as predicted by the theory.

We then test further features of the model in simulation. We show that for empiri-
cally relevant parameter values the particular population distribution we recover well-
approximates Zipf’s law. We provide simulated comparative statics based on varying pa-
rameter values across simulations to document how changes in congestion, spillovers, and
trade costs influence the observed power law. We identify changes to the power law in the
directions implied by the empirical literature. Finally, we note an additional theoretical
result relating to the prior Zipf’s law literature. Given the properties of the model, we
show that Gibrat’s law holds within the model when the aggregate population increases,
showing that size-invariant growth is a feature of a lognormal equilibrium population dis-
tribution based on variation in geography and trade, in contrast to earlier literature that
took random growth to be the basis for lognormal populations.

4.1 Empirics

Wenow test the validity of ourmodeling assumptions and its predictions using real-world
population data by inverting this model to recover fundamentals and construct market
access.

We use the 2017 Commodity Flow Survey to estimate trade costs, and the 2020 De-
cennial Census for county-level populations and incomes. Our inversion differs from that
in Allen and Arkolakis (2014) in that we do not take Li to be the population density of
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the counties, but rather the level of the population. This is more consistent with equation
13, which states that total income in a location must equal its production. We follow the
geographic trade cost estimation procedure as in Allen and Arkolakis (2014), using the
observed shares by various modes to estimate a discrete choice model of trade. We take
travel maps from the Census TIGER/Line collection and the US Department of Trans-
portation for various travel modes, and estimate the distances between CFS regions based
on the county-county distances drawing on insights from Head and Mayer (2009). We
then estimate a PPML regression to recover the parameters of this discrete choice prob-
lem to fix geographic trade costs and also estimate non-geographic trade costs. We recover
the exogenous locational fundamentals by setting α = 0.03, in line with the estimates in
Combes et al. (2019), Rosenthal and Strange (2004), and Combes and Gobillon (2015),
and fix β = −1

3
based on household spending on housing and an isomorphism in the

model.21 More details on our estimation procedure and our recovered parameter values
are provided in the appendix.

The distribution of county populations is shown in the left-hand column of Figure II,
with both the density and QQ plot exhibiting a close fit to a lognormal distribution. The
recovered own-fundamental term Fi, plotted in the middle column, is also strikingly log-
normal. The recovered empirical market accessMi is also lognormally distributed. These
results provide empirical support for our decision to model fundamentals as lognormal,
and verify that our theoretical result regarding the distribution of market access holds in
the data.

4.2 Simulation of the Population Distribution

We next simulate the model to investigate the resulting population distributions and the
robustness of our asymptotic theoretical results in a finite setting. We simulate the results
within a two dimensional geography. Each location in the model is a place that can host a
settlement.22 Note that the definition of a “location” is not specified by the model, beyond
being a place within which local spillovers occur.23 We define the most populous 5% of
locations as “cities” within the model, to demonstrate that the tail behavior of the result-
ing population distribution mirrors the appearance of a power law in empirical city size

21The estimate is consitent with those in Combes et al. (2008) and Davis and Ortalo-Magné (2011).
22This interpretation matches that in Redding and Rossi-Hansberg (2017), which frames locations as re-

gions which can potentially hold a single settlement.
23That the model is ambiguous on the level of aggregation of population means it is consistent with the

observation of the characteristic population distribution at varying levels of aggregation, as in Holmes and
Lee (2010), Rozenfeld et al. (2011), and Mori et al. (2020). Spillovers are unlikely to be purely local at
any level of aggregation, and so differing levels of aggregation may require different parameters governing
“local” spillovers that are a useful abstraction from more complex patterns of spillovers.
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Figure II: The figure shows the distribution of population across US counties along with the dis-
tributions of the recovered own-fundamental terms Fi and the market access terms Mi. All of the
distributions have been normalized for comparison against a standard normal distribution. The
distribution of the recovered terms appear lognormal, as predicted by the theory.
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distributions.
We take model parameters from the literature and from our empirical exercises where

possible. The elasticity is set to σ = 5, and α = 0.03 and β = −1
3
. Our simulation is done on

a dartboard geography. We draw exogenous fundamentals from lognormal distributions
with µU = µA = 0 and σA = σU = 1. We allow these to have a correlation of 0.18 within
locations, as found in our empirical inversion of US data, andwe allow fundamentals to be
spatial correlated and set the degree of spatial correlation at each distance ρD = exp(−δρD ·
dij). We set δρD = 0.5 reflect the decay of spatial correlation in attributes for US data, given
our normalization of distance. We base trade costs on both a geographic component as
well as bilateral and idiosyncratic shocks ϵBij and ϵIi , setting τ simij = exp(δTC · ϵBij · ϵIi · dij),
where we draw the shocks from uniform distributions. We use the rate of increase of trade
cost on roads from our regression on the US CFS data to parameterize the geographic
portion of trade costs and set δTC = .001. These parameters are listed in Table I.

Parameters Fundamentals Trade costs
α 0.03 µU = µA 0 δTC 0.001
β −0.3̄ σA = σU 1 ϵBi,j, ϵ

I
i ∼ U(0.5, 1.5)

σ 5 ρAU 0.12
δρD 0.5

Table I: Parameters used for simulation.

We demonstrate the robustness of the lognormal population distribution by perform-
ing 1000 simulations, each time drawing a new randomly generated distribution of funda-
mentals. Figure III displays smoothed results over 1000 simulations of the model.24 The
QQ plot also demonstrates lognormality of the expected log population over these sim-
ulations. We verify the robustness of the power law coefficient estimate across the simu-
lations, with an average coefficient across the 1000 simulations of -0.95, with a standard
deviation of 0.03. 90% of estimated coefficients are between -0.900 and -1.004. Perform-
ing the (log) rank-size regression on the smoothed distribution delivers a slope of -0.95.
The parameter values used here are consistent with the literature and estimates are near
the Zipf’s Law of -1 for all simulated values. While the model using standard parameters
from the literature closely approximates the Zipf’s Law coefficient of -1, we maintain our
argument that the -1 coefficient is not a meaningful feature of the data. Changes in scale
and the truncation point can influence the estimate, as discussed in Section 2 and Sup-
plemental Appendix B. Nonetheless, it is interesting to note that the estimated power law

24The log of population is averaged at each rank of the distribution over the 1000 simulations. Results are
similar when averaging the population and taking the log.
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Table II: Normality Tests

Kolmogorov-Smirnov Lilliefors Jarque-Bera
Rejected at 1% 0.000 0.007 0.009
Rejected at 5% 0.001 0.047 0.041

Notes: Table shows the share of tests for a normal distribution rejected for the log equilibrium population of
1000 simulations.

Table III: Simulated changes in distribution

∂θ1
∂α

∂θ1
∂β

∂θ1
∂δTC

Sign of change + + +

Notes: Direction of the change in slope coefficient in the (log) rank-size regression for changes in α, β, and
δTC , holding other parameters constant. “+”means the estimated slope (which is negative by construction)
has become flatter. This implies that the largest large cities are relatively bigger. Note that β < 0, so an
increase in β means a decrease in congestion. The signs are from a regression of the parameters on the
estimated coefficients (discussed in Supplemental Appendix E.2)

exponent appears consistent with Zipf’s Law for typical parameter values in the literature.
We test each of the 1000 simulated population distributions against the null hypothesis

that the logged population distribution is normally distributed using the Kolmogorov-
Smirnov, Lilliefors, and Jarque-Bera tests. The results of these tests are given in Table
II. None of the tests reliably reject the normal distribution for the logged population. A
degree of kurtosis is evident in the QQ plot as both tails appear slightly heavier than a
normal distribution, which may be attributable to the finite grid.

We next simulate the comparative statics of the estimated power law coefficient for
the city size distribution, testing its sensitivity to changes in model parameters. Chang-
ing parameters alters the estimated coefficient of the log rank-size regression, which we
denote θ1 as in Equation 1. We perform 100 simulations for each of 150 combination of
parameters.25 A summary of the signs of changes (estimated by a regression given in
Supplemental Appendix E.2) is provided in Table III.

The comparative statics of our model demonstrate changes in the estimated power law
coefficient in line with empirical evidence. Increasing the benefits of agglomeration by
raising α > 0 results in a more unequal city size distribution (greater dispersion, or a

25We simulate for 5 values of α, 6 values of β, and 5 values of δTC given in Supplemental Appendix E.2.
The geography has the same dimensions as our baseline simulations but we change the number of locations
in the full geography to 10000 to reduce computation time.
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Figure III:
Smoothed Output Over 1000 MC Simulations
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Slope: -0.9617

1000-draw MC Value

Coef. of Avg. -.962

Avg. over Coefs -.958
Std. Dev. (.055)

Min -1.138
5pct -1.053
25pct -.994
50pct -.957
75pct -.921
95pct -.869
Max -.797

Notes: The population distribution resulting from numerical simulation of the model is in the upper left
panel, and the resulting QQ plot is on the upper right. Both show that the equilibrium population distribu-
tion appears lognormal. The city size distribution of theMonte Carlo output is in the lower left, and statistics
over model simulations the lower right. The slope on the lower left left represents the slope taken over the
average of log(pop) at each rank over 1000 simulations, and the bounds contain 95% of the log populations
at each rank of the distribution. The table displays statistics over the 1000 estimated power law coefficients
from the simulations.
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flatter slope) and increasing local congestion costs by reducing β < 0 results in a more
equal distribution (less dispersion, or a steeper slope). Increasing trade costs by increas-
ing the rate at which these costs grow with distance, δTC > 0, likewise results in a more
unequal city size distribution. In many developing countries, the city size distributions
are highly unequal, generating the flatter slopes in the log-log regression documented in
Duben and Krause (2021). These unequal city size distributions be attributable to high
domestic transportation costs, which are often substantially higher in developing than in
developed countries. Atkin and Donaldson (2015) estimate that domestic trade costs are
roughly four to five times higher in Nigeria and Ethiopia than in the U.S., in line with the
empirical evidence documented in Teravaninthorn and Gaël (2009). These high domestic
trade costs could contribute to the phenomenon of very large metropolises relative to sec-
ondary cities (“primate cities”) within the developing world. Additionally, the flattening
slope in the U.S. in recent decades, documented in Gabaix and Ioannides (2004), could be
a result of increased agglomeration benefits in the modern services economy.

4.3 Gibrat’s Law

Allen andArkolakis (2014) demonstrate that the population vector is scaled by changes in
the aggregate population, but the relative populations over locations are not changed by
changes in the total population. We nowdemonstrate that based on this property the equi-
librium population distribution demonstrates proportional growth and satisfies Gibrat’s
law in response to increases in the aggregate population L̄. We can write Equation 29, the
matrix form representation of Equation 17 as:

h̃ = J ˜[h]
γ2
γ1

where h̃i′ = hi′W̄
σ−1

1− γ2
γ1 , the notation [·]a indicates raising each element of the vector to the

power a, and the matrix J is given in Supplemental Appendix A.4. As this relationship
must hold for any level of L̄, changing L̄ does not impact the resulting population distri-
bution even as it impacts welfare (W̄ , which is the same across all locations). That is, a
percentage increase in overall populationwill result in each location experiencing popula-
tion growth of the same percentage. As a result, population growth rates will be unrelated
to initial population and Gibrat’s law will hold within the equilibrium of this model.

This is a key difference between our explanation for observed population distributions
based on locational fundamentals and trade and the prior literature on random growth
models. Rather than being the force creating the equilibriumdistribution, random growth
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is a feature of an equilibrium based on the underlying characteristics of place and trade.
This view is supported by the absence of Gibrat’s law in systems that are in transition or
have suffered dis-equilibrating shocks (Desmet and Rappaport 2017; Davis andWeinstein
2002, 2008).

5 Conclusion

The power law-like distribution of city populations is a striking empirical regularity that
holds across countries and over millennia. In this paper, we demonstrate that a broad
class of economic geographymodels generate these characteristic population distributions
whenmodeledwith a realistic geography. We integrate insights fromeconomic geography
theory regarding the importance of both the qualities of a location and its market access
for its population into the extensive literature on power law-like population distributions
and Zipf’s Law. Viewing population distributions as arising naturally in response to fa-
vorable geography and trade access provides a simple explanation for the emergence of
the distinctive city size distribution. This explanation is consistent with the persistence of
human settlements, the recovery of cities from disasters, and the random growth of cities
in equilibrium.
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SUPPLEMENTAL APPENDIX
for “Populations in Spatial Equilibrium”
Matthew Easton and Patrick W. Farrell

This appendix includes proofs and additional material.

1. Discussion of Main Text Results and Proofs.
2. Pareto vs. Lognormal Simulations
3. Attributes and Fundamentals
4. Model Inversion
5. Additional Details on Simulation
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A Discussion of Main Text Results and Proofs

A.1 Algebra for “Pareto Form” of Lognormal PDF

The density function of a lognormal distribution is given by:

f(x) =
1

xσ
√
2π

exp

(
−(ln(x)− µ)2

2σ2

)
Expanding the square and grouping the ln(x) terms yields:

f(x) =
1

xσ
√
2π

exp

(
ln
(
x(

− ln(x)+2µ

2σ2 )
)
− µ2

2σ2

)
Applying eln(ab) = ab and combining with x−1:

f(x) =
1

σ
√
2π

exp

(
− µ2

2σ2

)
x−(

ln(x)−2µ

2σ2 )−1

Writing the constant term 1
σ
√
2π

as Γ, the lognormal distribution can be written as:

f(x) = Γx−α(x)−1 , where α(x) = ln(x)− 2µ

2σ2

which is the same as Equation 3 in themain text. The representation of the lognormal PDF
here appears in Malevergne et al. (2011), and is similar to that in Eeckhout (2009).

The lognormal distribution, while fitting the body of the population distribution well,
provides somewhat worse fit compared to similar distributions with more parameters,
such as the double Pareto lognormal. We focus on describing the full population distribu-
tion as lognormal for relative simplicity of analysis. More robust discussions of goodness-
of-fit tests and alternative statistical descriptions of population distributions can be found
in Giesen et al. (2010) and Ioannides and Skouras (2013).

2



A.2 Discussion of Lemma 2 (Marlow 1967)

A demonstration of the apparent normality in both levels and logs of sum of positive ran-
dom variables is included in the main text in Figure A.I, which shows the sums of lognor-
mal (exp(N(0, 1)), truncated normal (a standard normal truncated at 0), and (0,1] uniform
random variables. The sums of these random variables converge to normal distributions,
while the log of the sum also appears to follow a normal distribution.

Examples of sums over several positive random variables (lognormal, truncated nor-
mal, and uniform) are presented in Figure A.I, exhibiting the appearance of normality in
both levels and logs for these sums.

The Marlow result is interesting, as it appears to imply that a sum of positive random
variables can be viewed as approaching a lognormal or normal distribution for large N.
However, if we are considering both the normal and lognormal approximations for a sum
of positive random variables we can demonstrate convergence of the lognormal approx-
imation to the equivalent normal approximation—that is, the lognormal and normal ap-
proximation will be identical in the limit. The following discussion draws onMazmanyan
et al. (2008).

For simplicity, consider an approximation of i.i.d positive random variables with mean
m and variance s2. The normal approximation will have parameters µN = nm = M and
σ2
N = ns2. We will now define the parameters for the lognormal approximation of the

sum.
First, define the coefficient of variation as

Cv =

√
ns2

nm
=

√
ns

nm
(22)

As n grows large, Cv → 0.
The parameters µX and σX of the lognormal approximation can be found by

σ2
X = ln(1 + C2

v ) (23)

µX = ln(nm)− σ2
X

2
(24)

As Cv → 0when n→ ∞, Equation (25) gives that as n→ ∞:

σ2
X → C2

v , so σX → Cv , and σX → 0 (25)
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Nowwedemonstrate that the lognormal approximation converges to the expected nor-
mal. As, for somem, P (||x−M || > ϵ|n ≥ m) = 0, so x

M
→a.s. 1. We canwrite x

M
·σX →

√
ns

nm
,

and so xσX →
√
ns = σN . This means 1

xσX

√
2π

→ 1
σN

√
2π
.

Similarly, x = xM
M

, so ln(x) = ln(M) + ln( x
M
). As x

M
→ 1, so ln( x

M
) → x−M

M
. As

µX = ln(M)− σ2
X

2
, and σX → Cv → 0, andM = µN then we have

ln(x)− µx

σX
→

ln(M) + (x−M
M

)− ln(M)

σX
=
x−M

MσX
→ x−M

M · Cv

=
x− µX

σN
(26)

So we have shown, as n→ ∞,

f(x) =
1

xσX
√
2π
e
− 1

2

(
ln(x)−µX

σX

)2

→ 1

σN
√
2π
e
− 1

2

(
x−µN
σN

)2

(27)

So as n increases, the lognormal approximation to the sum approaches the normal
approximation.
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Figure A.I:
Sums of Positive Random Variables Drawn from Various Distributions

Histogram, 1,000,000 Replications
Sum of 1000 Lognormal RVs
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Notes: Histograms show 1,000,000 replications. The random variables in the first row are drawn from a
lognormal distribution with parameters µLN = 0, σLN = 1, the middle row from a truncated normal distri-
bution with parameters µTN , σTN = 0 and minimum value α = 0.001, and the bottom row from a uniform
distribution on (0, 1]. The red overlaid line represents a normal distribution with the same mean and stan-
dard deviation as the underlying sums in each panel. The sums appear distributed normally in both levels
(column 1) and in logs (column 2), as implied by Lemma 1.
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A.3 Additional Proofs

A remaining point is the α−mixing of the population distribution itself. We want to en-
sure that the distribution is such that the full distribution is realized— we further require
that populations are not too correlated across locations. While we have proven that the
distribution of the population in each i approaches a lognormal, we did not formally rule
out the case where the population is perfectly correlated such that the PDF of the realized
population distribution appears degenerate.

The mixing definition applied in the main text paplies to sequences. To consider the
mixing of the population, we now require a shift from considering themixing properties of
points or summations defined over sequences for individual locations to considering the
mixing properties of the random variables across the full plane. Population is defined on a
plane and is a random field, a generalization of random sequences to a multidimensional
space. A random field is a collection of X-valued random variables indexed by elements
in a topological space T.

The following definition of α-mixing for random fields is used when considering α-
mixing of the population across the two-dimensional geography.

Definition 2, α-mixing (fields): Suppose {Xi}, i ∈ Z2 is a stationary random field where each
Xi is drawn from a common distribution. For disjoint sets S, T , define the σ-fields:

FS := σ (Xs, s ∈ S)) ,FT := σ (Xt, t ∈ T )) .

The notation σ(. . .) means the σ-field ⊂ F generated by (. . .). Define:

α (S, T ) = sup
A∈FS ,B∈FT

|P(A ∩B)−P(A)P(B)|.

Define dist(S, T ) = infs∈S,t∈T ∥s − t∥, where ∥ · ∥ denotes the Euclidean norm. For each k ≥ 1

and u, v ∈ R++, define:
α(k;u, v) := sup

S,T
α (S, T ) ,

where the supremum is taken over all disjoint subsets S, T with |S| ≤ u, |T | ≤ v such that
dist(S, T ) ≥ k. The random field {Xi} is said to be “strongly mixing” (or “α-mixing”) if
α(k;∞,∞) → 0 as k → ∞.

The definition above is drawn fromDoukhan (1994) and Bradley (1993), both ofwhich
also include further discussion and additional mixing concepts for fields. The key dis-
tinction from the definition for sequences introduced earlier is the need to incorporate a
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concept of distance, which previously was summarized by the indices when considering
α-mixing of a sequence.

Under certain conditionswe can show that the populationwill be α-mixing, whichwill
ensure that populations will be asymptotically independent across space. The restrictions
necessary to establish α-mixing are strict, and α-mixing is not itself a necessary condition
for the ergodicity of the population distribution as α-mixing is a stronger concept which
implies ergodicity (Frigg et al. 2020).

To ensure this, we introduce a Lemma that generalizes α-mixing results for sequences.

Lemma 3: Suppose that for each n = 1, 2, 3, ..., X(n) :=
(
X

(n)
i , i ∈ Z2

)
is a (not necessarily

stationary) field of random variables. Suppose these fields X(n), n = 1, 2, 3, ... are independent of
each other. Suppose that for each i ∈ Z2, hi : R×R×R× . . .→ R is a Borel function. Define the
field X := (Xi, i ∈ Z2) of random variables by Xi := hi

(
X

(1)
i , X

(2)
i , X

(3)
i , . . .

)
, i ∈ Z2. Then for

each k ≥ 1, αX(k,∞,∞) ≤
∑∞

n=1 αX(n) (k,∞,∞), where αZ indicates the mixing coefficient for
field Z.

The proof of Lemma 3 is stated below.

Proof: First, we want to show that α-mixing is preserved over measurable transforma-
tions of α-mixing random fields, and thenwewant to show that combinations of α-mixing
random fields are also mixing. For brevity, we write α(k) in place of α(k;∞,∞).

1. Define the field {D̄i} such that for all i ∈ Z2, D̄i = j
(
D

(1)
i , D

(2)
i , D

(3)
i , ...

)
, where j(·)

is a measurable mapping that takes the field {Di}, which is an n-tuple of random
variables for each i ∈ Z̄, as input. The field {Di} is α-mixing with respect to distance
k. We want to show that the field {D̄i}will be mixing as well. First note that

P
(
D̄s∈S ∈ A, D̄t∈T ∈ B

)
= P

(
(D

(1)
s∈S, D

(2)
s∈S, D

(3)
s∈S, ...) ∈ j−1(A),

(D
(1)
t∈T , D

(2)
t∈T , D

(3)
t∈T , ...) ∈ j−1(B)

)
And so,

αD̄(k) = sup
A,B

∣∣P (D̄s∈S∗ ∈ A, D̄t∈T∗ ∈ B
)

− P
(
D̄s∈S∗ ∈ A

)
P
(
D̄t∈T∗ ∈ B

)
= sup

A,B
|P
(
(D

(1)
s∈S∗, ...) ∈ j−1(A), (D

(1)
t∈T∗, ...) ∈ j−1(B)

)
− P

(
(D

(1)
s∈S∗, ...) ∈ j−1(A)

)
P
(
(D

(1)
t∈T∗, ...) ∈ j−1(B)

)
|

≤ αD(k),
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as αD(k) is defined as the supremum over sets S, T , not the fixed S∗, T∗ that corre-
spond to {D̄i}. As αD(k) → 0 as k → ∞, then αD̄(k) → 0 as well and so {D̄i} is
α-mixing.

2. We now show that given two independent stationary random fields {Yi}, {Zi}where
i ∈ Z2 which are α-mixing with respect to distance k, the bivariate field {Xi} where
Xi = (Yi, Zi) is also mixing.
Define I :

I = |P(Xs∈S ∈ A,Xt∈T ∈ B)−P(Xs∈S ∈ A)P(Xt∈T ∈ B)|

= |P((Ys∈S, Zs∈S) ∈ A, (Yt∈T , Zt∈T ) ∈ B)

−P((Ys∈S, Zs∈S) ∈ A)P((Yt∈T , Zt∈T ) ∈ B)|

Define

f(Zs∈S, Zs∈T ) = P((Ys∈S, Zs∈S) ∈ A, (Yt∈T , Zt∈T ) ∈ B)

g(ZS∈S) = P((Ys∈S, Zs∈S) ∈ A)

h(Zt∈T ) = P((Yt∈T , Zt∈T ) ∈ B)

Substituting in and taking expectations,

I =|E[f(Zs∈S, Zs∈T )]−E[g(Zs∈S)h(Zt∈T )]|

Add and subtract E[g(Zs∈S)]E[h(Zt∈T )]:

= |E[f(Zs∈S, Zs∈T )]−E[g(Zs∈S)]E[h(Zt∈T )]

+E[g(Zs∈S)]E[h(Zt∈T )]−E[g(Zs∈S)h(Zt∈T )]|

Re-arrange and, using the | · |,

= |E[f(Zs∈S, Zs∈T )]−E[g(Zs∈S)]E[h(Zt∈T )]

− (E[g(Zs∈S)h(Zt∈T )]−E[g(Zs∈S)]E[h(Zt∈T )])|

≤ |E[f(Zs∈S, Zs∈T )]−E[g(Zs∈S)]E[h(Zt∈T )]|︸ ︷︷ ︸
II

+ |E[g(Zs∈S)h(Zt∈T )]−E[g(Zs∈S)]E[h(Zt∈T )]|︸ ︷︷ ︸
III
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Begin with II , where we use independence of Y, Z and mixing of Y to show

II = |E[f(Zs∈S, Zs∈T )]−E[g(Zs∈S)Eh(Zt∈T )]|

= |E[P((Ys∈S, Zs∈S) ∈ A, (Yt∈T , Zt∈T ) ∈ B)]

−E[P((Ys∈S, Zs∈S) ∈ A)]E[P((Yt∈T , Zt∈T ) ∈ B)]|

= |E[P((Ys∈S, Zs∈S) ∈ A, (Yt∈T , Zt∈T ) ∈ B|Zs∈S = zs∈S, Zt∈T = zt∈T )]

−E[P((Ys∈S, Zs∈S) ∈ A|Zs∈S = zs∈S)]E[P((Yt∈T , Zt∈T ) ∈ B|Zt∈T = zt∈T )]|

= |P(Ys∈S ∈ A, Yt∈T ∈ B)−P(Ys∈S ∈ A)P(Yt∈T ∈ B)|

Taking the supremum over A,B, we have

II ≤ αY (S, T )

Now consider III :

III = |E[g(Zs∈S)h(Zt∈T )]−E[g(Zs∈S)]E[h(Zt∈T )]|

= |Cov(g(Zs∈S), h(Zt∈T ))|

Note that ∥g(Zs∈S)∥∞, ∥h(Zt∈T )∥∞ ≤ 1. By Lemma 3.1 of Doukhan (1994) and the
α-mixing of {Zt} we have

III ≤ 4αZ(S, T )

And so, putting together the above and, taking the supremum over A,B:

αX(S, T ) ≤ αY (S, T ) + 4αZ(S, T )

Taking the supremum again over all S, T such that dist(S, T ) ≥ k, we find

αX(k) ≤ αY (k) + 4αZ(k)

And, as we know αY (k), αZ(k) → 0 as k → ∞, we have αX(k) → 0 as k → ∞ and so
the field {Xi} is mixing with respect to distance k.

Combining the results of Parts 1 and 2 establishes the result. ■
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The proof extends the result for α-mixing sequences from Bradley (2005) Theorem 5.2
to α-mixing fields in two dimensions.

Lemma 3 states that measurable transformations and combinations of α-mixing fields
are also α-mixing. If our geography was one-dimensional, such as a circle or line, the
equivalent statement is given by Theorem 5.2 of Bradley (2005) which establishes that
α-mixing is maintained over measurable transformations and over combinations of inde-
pendent α-mixing random sequences. As our geography is defined in two-dimensions (to
reflect a realistic geography), our Lemma 3 extends Theorem 5.2 of Bradley (2005) to two
dimensions.

We assume that the sequences {Ai} and {Ui} are α-mixing with respect to distance to
reflect the patterns of correlation in geographic attributes across space.26 This assumption
captures the potential similarity of nearby locations and how this similarity vanishes with
increasing distance, and is consistent with the argument for α-mixing of the elements of
the market access summation in the prior section.27

Proposition 4: If {Ai} and {Ui} are independent α-mixing fields, then {Fi} is an α-mixing field.

The proof follows directly from Lemma 3, as α-mixing is maintained over measurable
transformations and over combinations of independent α-mixing random sequences. We
must make the stronger assumption that Ai and Ui are independent, but given α-mixing
of these sequences independence establishes that {Ωi} will also be α-mixing.28

We can then show that the population sequence {Li}will be α-mixing as well, given an
additional assumption that the market access terms Si are also α-mixing. This will ensure
that the full probability space of the population distribution will be realized for large N .

Theorem 2: If {Ωi} and {Si} are independent α-mixing fields, then the population field {Li} is
α-mixing.

The proof also follows directly from Lemma 3. The α-mixing of the population within
the model is consistent with real-world population distributions, as large population cen-

26If geographic attributes were independent sequences the α-mixing of {Ai} and {Ui} would follow di-
rectly from Theorem 5.2 of Bradley (2005) and α-mixing of attributes with respect to distance. However, as
many attributes are likely not independent, we must assume α-mixing of the fundamentals with respect to
distance

27Wefind that the correlation of the constructed “naive” fundamentals across space declines with increas-
ing distance, as shown in in Supplemental Appendix C.6, consistent with the assumption of α-mixing.

28This assumption is necessary for the application of Theorem 5.2 of Bradley (2005) in the proof of Propo-
sition 4, but we will relax this assumption in our simulations and show that it does not appear necessary for
the result. Allen and Arkolakis (2014) find a low, but non-zero, correlation of 0.12 between Ai and Ui and
our recovered fundamentals (discussed in the following section) have a similar correlation of 0.18.

10



ters tend to be surrounded by other populous areas rather than sparsely populated re-
gions.29 The α-mixing of the population also implies that the very largest cities will not
cluster together despite the correlations in population, because the population of different
locations will approach independence as distance between them increases.

29There is a literature on urban shadows which suggests that new cities tend not to form immediately
next to existing cities, and which appears to be in tension with the correlation of the population distribution
across space. One example of this literature is Bosker and Buringh (2017), which documents a “shadow”
surrounding cities in Europe from 800-1800. This shadow is ascribed to forces beyond our model, such as
the risk of armed conflict between cities, and results within Bosker and Buringh (2017) still demonstrate a
high degree of spatial correlation in the population distribution (see, for example, their Figure 4). Related
work on urban growth shadows, as in Cuberes et al. (2021) find that the growth of peripheral regions near
large urban centers is influenced by the central city, with locations near urban centers tending to grow faster
over the past century, which is also consistent with spatial correlation in populations.
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A.4 Population as a random variable

The system of equations describing the population distribution, given for a particular lo-
cation i in Equation 17 can be expressed in matrix form as:

θh = J[h]
γ2
γ1 (28)

where θ = W̄ σ−1, each element of the vector h is given by hi = Lσ̃γ1
i , and [h]

γ2
γ1 indicates

raising each element of the vector h to the power γ2
γ1
. The matrix J, where elements ji,n =

A
σ̃(σ−1)
i U σ̃σ

i τ 1−σ
i,n Aσ̃σ

n U
σ̃(σ−1)
n , is given by

J =


j1,1 j1,2 . . . j1,N

j2,1 j2,2 . . . j2,N

. . . . . . . . . . . .

jN,1 jN,2 . . . jN,N


where J is an N̄ × N̄ random matrix, with its elements consisting of the realizations for
fundamentals and trade costs for all locations. The vector h, which consists of transforma-
tions of the population vector, is the eigenvector corresponding to the leading eigenvalue
of this random matrix as shown in the online appendix to Allen and Arkolakis (2014).
The eigenvectors of random matrices are themselves random vectors, which motivates
our treatment of each Li as a random variable.30

Note that each sequence {sn,i} for a given i can be written as the vector si resulting
from the following matrix multiplication:

si = θkiJ−1h (29)

where ki is a vector of elements kn,i = τ 1−σ
i,n Aσ̃σ

n U
σ̃(1−σ)
n .

The randomvectorh is not the eigenvector of the randommatrixK. The vector si results
from themultiplication of a randomvector and a randommatrix, motivating the treatment
of elements sn,i as random variables.

30For a review of random matrices, see Anderson et al. (2010) and for results on eigenvectors see Ben
Arous and Guionnet (2010) and O’Rourke et al. (2016).
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B Pareto vs. Lognormal Simulations

We provide additional evidence for the lognormality of the true population by focusing
on the behavior of the distribution in the tail. As discussed in Eeckhout (2004), one char-
acteristic of the lognormal as compared to the Pareto is the sensitivity of the estimated
coefficient to the truncation point. This can be see in Figure A.II, where selecting alter-
native truncation points changes the estimated power law coefficient. The left column
consists of three plots where we estimate the power law coefficient on three different sub-
sets of the U.S. city distribution. Panel A presents the same plot as main text Figure I.
When including more cities (Panel C) the coefficient rises, and when including few cities
(Panel E) the coefficient falls. This is in linewith the expected behavior of the scale-varying
“shape parameter”-like term of the lognormal distribution in Equation 3. The R2 of all of
these regressions remains similarly high. The changes in the estimated coefficient are in
linewith expectations if the true underlying distributionwere lognormal and demonstrate
that, while the -1 exponent can be found for a particular truncation point (as in Figure I),
it does not appear to be a meaningful feature of the distribution.

In the right column of FigureA.II, we consider deviations in the far tail by excluding the
top quarter of cities within each subset of the city distribution. In all cases, nearly all top
quarter cities fall below the trendline predicted based on the rest of the distribution.31 The
magnitude of the systematic divergence is very large, which is obscured on the log scale.
As noted in the main text, the total deviation below the trendline in Panel A is 76 million
people missing from the top 250 U.S. MSAs, roughly a quarter of the U.S. population. The
deviations are larger when estimated on the subset of cities below the top quarter as in
Panels B, D, and F. If the Pareto were the true distribution, panel B indicates a cumulative
absence (in expectation) of 412 million people while panel D indicates a cumulative 494
million people missing from the sets of cities considered, both substantially more than the
entire U.S. population, while panel F indicates an absence of 169 million people, roughly
half the U.S. population.32

This scale variance offers evidence for the lognormal interpretation of the population
distribution. When the true population is lognormal, large economies or regions (those
containing many cities) should systematically contain smaller large cities than predicted
by the estimated power law. We first demonstrate this property of the two distributions

31Of top-quarter MSAs, 62 of 62 MSAs in Panel B, 93 of 96 MSAs in panel D, and 27 of 27 MSAs in panel
F are below the respective trendlines in Figure A.II

32Repeating this exercise with other large countries (India, China, and Brazil) using standardized city
definitions from Dingel et al. (2021) indicates similarly large divergences in the tail, all in the expected
direction (cumulative absences of 135 million, 53 million, and 8 million respectively).
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Figure A.II:
Truncation Points and Power Law Coefficients
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trendline for the full distribution and Panels B and D display the trendline excluding the top 25% of MSAs
(in orange) in each panel. Altering the truncation point substantially influences the estimated coefficient, as
can be seen by contrasting Panels A and C with Figure I Further, nearly all top quartile MSAs falling below
the trendline (94 of 97 MSAs in panel B and 27 of 27 MSAs in panel D are below the respective trendlines).
Both are consistent with the U.S. population distribution being lognormal.
Data Source: U.S. Census
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via simulation in Figure A.III. We calibrate a lognormal distribution to match a Pareto dis-
tribution with shape parameter αP = 1 in the tail.33 The plots show the average value
over 10000 draws from each distribution at each rank of the city size distribution, with
the bands reflecting the 95 percent confidence interval. We calculate the slope at several
scales excluding the top 25% of cities, to demonstrate the tail divergence of the lognormal
resulting from its scale-variance, in contrast to the scale-invariant Pareto. When the tail is
constructed to contain 100 cities, the difference between the two plots is minimal. How-
ever, when the tail is constructed to have 800 cities, cities in the far tail of the lognormal
fall well below the estimated trendline.

33The lognormal parameter σLN = 2.6 used for these simulations is similar to that resulting from simula-
tion of the model (in Section 4) for standard parameter values in the literature. This value is larger than that
identified by Eeckhout (2004) (who finds σLN = 1.75). The difference could partially be attributed to dif-
fering truncation points, along with the empirical difficulty of evaluating the population of small locations
and the lower bound on real-world populations of 1.
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Figure A.III:
Comparison of Lognormal and Pareto Distributions of Cities
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Notes: Comparison of Lognormal (left) and Pareto (right) for simulated small, medium, and large “coun-
tries.” The LN is truncated for cities 2 standard deviations above µLN , and the Pareto has a minimum value
equivalent to this truncation point with shape parameter αP = 1. The slope in each plot is calculated ex-
cluding the top 25% of cities in each country, and the bands contain 95% of the observed values at each rank
over 1000 simulations. At small scales, the lognormal distribution at Pareto distribution are largely indis-
tinguishable. However, scale variance of the LN leads to substantial divergence in the tail. At larger scales
(large countries with more large cities), if the distribution is draw from a LN distribution the large cities
tend to fall below the trendline (with trend above the 95% band) while the the Pareto distribution does not
diverge.
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C Attributes and Fundamentals

C.1 Data

In this section, we list the variables we used in Section 3 for our correlation matrices and
tables. The data come from the publicly-available data of Henderson et al. (2018).

1. Ruggedness: index measure of local variation in elevation. Originally computed by
Nunn and Puga (2012) with corrections made in Henderson et al. (2018).

2. Elevation: above sea level, meters

3. Temperature: average from 1960-1990 of monthly temperatures, Celsius

4. Precipitation: average from 1960-1990 of monthly total precipitation, mm/month

5. Land Suitability: propensity of an area of land to be under cultivation based on sepa-
rate measures of climate and soil quality

6. Distance to Coast: distance to the nearest coast, km

7. Distance to Harbor: distance to nearest natural harbor on the coast, km (great circle)

8. Distance to River: distance to nearest navigable river, km

9. Malaria: index of the stability of malaria transmission

10. Land Area: grid cell area covered by land, km2

11. Growing Days: Length of agricultural growing period, days/year
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C.2 Summary Statistics

We provide summary statistics of our attributes in Table A.I.

Table A.I: Summary Statistics for Attributes

Notes: Summary statistics for ordered geographic attributes for data points in the contiguous United States.
Data Source: Authors’ calculations based on replication files of Henderson et al. (2018)
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C.3 Correlation Calculations

Cross-Correlations

For every attribute type g, we calculate corr(ai,aj), ∀i, j ∈ G, j ̸= g, where ag is a
vector for each attribute type comprised of attribute values aig for every location i. This
exercise tells us how correlated each attribute is with each other attribute within locations,
giving an indication of howdependent realizations of geographic attributesmay be on one
another.34

Spatial Correlation

To calculate spatial correlations within attributes, we construct rings at varying distances
d (in miles) from every grid cell i in the contiguous U.S.; we refer to a location i around
which rings are being drawn as a centroid. These rings define a collection of grid points in
theU.S., Canada, andMexico at a given buffered distance (d−10, d+10) for each centroid.35

We then select a random point, called i∗(d, g), from within each ring of distance d from
every centroid i, to construct our sets of points to calculate the correlations; we re-draw a
random point for each attribute type g for every centroid. Mathematically, our calculation
for the correlation within an attribute type g between our set of centroids and our set of
points at distance d takes the form corr(ag,adg), ∀g ∈ G, ∀d, where ag is a vector of
attribute values aig for attribute type g for all centroid locations i in our sample, and adg

is a vector of all attribute values ai∗(d,g)g, the randomly-selected points for each centroid i
at distance d for each attribute type g.

34We do not know the full suite of attributes that characterize a location’s productivity, and in our lim-
ited panel we have some attributes which are mechanically correlated within a location (such as average
temperature and growing days).

35The spatial correlation in attributes between points at distance d = 100 miles should be interpreted as
“the correlation between a point and a randomly-selected point 90–110 miles away”. The buffer is to ensure
there are eligible points at roughly the desired distance.
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C.4 Empirics of Attribute Correlations

We empirically investigate the correlation of pairs of attributes within locations and the
correlation of attributes across space. We provide support for our assumption of α-mixing
for attributes within a place, used to apply the central limit theorem above to characterize
the fundamentals, and the assumption of α-mixing of attributes across space, which will
be used in Section 3 to characterize the population distribution.

We use gridded geographic data from Henderson et al. (2018), which includes a wide
variety of first-nature geographic attributes of which we use the eleven continuous vari-
ables.36 The dataset is at the quarter-degree latitude and longitude cell level.37 We focus
on the roughly 47,000 cells grid cells in the U.S., Mexico, and Canada, with the over 13,000
of those grid cells contained in the contiguous U.S. serving as our main sample.

First, we calculate the correlation between attributes within a given location and show
that weak dependence of attributes is a reasonable assumption, as there exist pairs of at-
tributes which do not appear correlated within places. We calculate cross-correlations
between our attributes for all grid cells in the contiguous U.S., as shown in Figure A.IVa.38

Our results show that the assumption of weak dependence of attributes appears reason-
able given the pattern of correlations of attributes within locations. While there appears
to be some correlation between some pairs of attributes within locations, the median cor-
relation among the least-correlated attribute pairs is very near 0.

Next, we demonstrate that while there is correlationwithin each attribute across space,
this correlation declines to zero as distance increases. We calculate spatial correlation at
various distances for grid points within the contiguous U.S., as seen in Figure A.IVb.39

The spatial correlation of attributes is high over short distances but as distance increases
spatial correlation falls to near zero. These results suggest spatial correlation of geographic
attributes does decline with distance, supporting the assumption that the fundamentals
will exhibit a similar pattern of declining correlation across space.

36The variables are ruggedness, elevation, land suitability for cultivation, distance to a river, distance to
an ocean coast, average monthly temperature, average monthly precipitation, distance to a natural harbor,
growing days per year, an index of malaria, and total land area of the grid cell. Variables in Henderson et al.
(2018) which were either categorical or discrete transformations of the continuous data were excluded from
our analysis.

37At the equator, a grid cell is ≈28-by-28 km; at 48 degrees latitude, ≈18-by-18 km.
38A description of how we calculated cross-correlation is provided in Supplemental Appendix C.3
39A description of how we calculated spatial correlation is provided in Supplemental Appendix C.3.
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Figure A.IV:
Correlations Within and Across Locations

(a)

(b)

Notes: (a) Cross-correlation and (b) spatial correlation structure of U.S. geographic attributes. The solid
black line represents the median correlation; the blue dashed lines represent the 25th and 75th percentile
bands.
Data Source: Authors’ calculations based on replication files of Henderson et al. (2018)
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C.5 A “Naive” Fundamental

For every attribute in our data set which has a minimum value less than or equal to 0,
we re-define the attribute using an affine transformation to put the minimum ≈0.1. We
then construct the “worst-to-best” ordering of our attribute values according to the sign
on each attribute from a regression on attribute influence on economic activity as found
in Henderson et al. (2018), Table 1. Attributes whose sign was positive we perform no
additional transformations to. Attributes whose sign was negative we invert. We use the
signs present in that table, as opposed to signs from a smaller regression of our subset of
attributes on U.S. economic activity, because we believe the signs in their regression could
plausibly be more robust world-wide.

After choosing our attribute value ordering, we then standardize the natural log of our
attributes:

âig =
ln(aig)−mean (ln(ag))

sd(ln(ag))

where mean (ln(ag)) is the mean of that attribute across all locations and sd ln(ag) is the
standard deviation. This produces logged attributes which are mean 0 and standard de-
viation 1.

We then aggregate our attributes into a fundamental given by Equation 20:

ln(Ai) =
∑
g∈G

ξgâig

setting ξg = 1, ∀g.
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C.6 Results: “Naive” Fundamental and Correlations

Figure A.V:
Lognormal Distribution of Locational Fundamentals for Contiguous U.S.
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Notes: Lognormal distribution of locational fundamentals. All eleven attributes were ordered worst to best
in terms of contribution to economic activity, logged, then standardized. The fundamental is calculated as
the standardized sum of the standardized, ordered log attributes. The attributes are at the grid-cell level
(N = 13, 426). The mean and variance are standardized to zero and one and a standard normal curve is
overlaid.
Data Source: Authors’ calculations based on replication files of Henderson et al. (2018)

We plot in Figure A.V the empirical PDF of the resulting distribution of productivity
fundamentals, calculated according to Equation 20 with ξg = 1, ∀g. The log of the empir-
ical “fundamental” here is closely fit by a normal distribution, supporting the claim that
aggregating weakly dependent and spatially correlated attributes can result in lognormal
fundamentals, both in theory and in the data.

Additionally, we calculate the spatial correlation of the logged fundamental over dis-
tance for the contiguous U.S. The table of correlation values, provided in Table A.II, shows
declining correlation over distance, consistent with our theoretical predictions and in line
with the spatial correlation declines which appear for geographic attributes (provided in
the main text).
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Table A.II: Spatial Correlation of Calculated Fundamental for the Contiguous U.S.

Distance (miles) Correlation
50 0.66
100 0.50
200 0.30
300 0.17
400 0.05
500 0.02
600 -0.01
700 -0.06
800 -0.07
900 -0.04
1000 -0.03

Notes: The table indicates declining correlation towards 0 over distance of our logged fundamental, in line
with theoretical predictions. Given randomness in the correlation calculation process, spurious and small
deviations from 0 at large distances are possible.
Data Source: Authors’ calculations based on replication files of Henderson et al. (2018).
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D Model Inversion

This appendix discusses our empirical portion, which recovers fundamentals using data
onwages and populations for US counties and estimated trade costs. Ourmodel inversion
largely follows Allen and Arkolakis (2014), with slight modifications to suit the data we
use, our interpretation of the model, and our preferred parameter values.

We draw on three data sources for data on county-county. We use the decennial census
for information on the total population in the county and on the demographic breakdown.
We use the American Community Survey from 2020 for average county incomes. We use
the Facebook Social Connectness Index for a measure of the degree of social connection
between pairs of counties.

For estimating trade costs we draw on the 2017 Commodity Flow Survey. We follow
Allen and Arkolakis (2014) in using a discrete choice estimation of the relative trade costs
for various modes based on mode-specific shares. The three modes we consider are road,
rail, and water. We exclude air, which was included in the original Allen and Arkolakis
(2014) inversion, as very few CFS pairs record trade via this mode and the distances
recorded in the 2017 CFS make it clear that most of this trade is not direct, such that it
is difficult to calculate the distances on a travel map without knowledge of the hub-and-
spoke system of air trade in the US.

We use three travel maps for our three modes. We draw on the TIGER/Line primary
roads map for 2019, from which we extract the Interstate Highway System. We then com-
plement this with the TIGER/Line primary-secondary road network for a complete road
network. We use the TIGER/Line railway map for 2019 for rails. We use a map of water
shipping routes from the US DOT for water routes. We convert each of these maps into
an equal distance raster with cells 5km across, and assign each cell in the raster a travel
speed. For roads, we assign the highest speed (70 mph) to interstate highways, a medium
speed to other roads (35 mph), a low speed to travel off-road (10 mph), and a negligible
speed to travel off land (0.1 mph). For trains we assign a high speed (50 mph) to travel on
rail and the same land and off land speeds as for road travel. For water, we assign a high
speed (20 mph) to travel on a designated water shipping route, a lower speed to travel on
water outside a shipping route (10mph), and a low speed to travel on land (1 mph). We
use the Matlab image processing tool to obtain the distance between all counties in the US
by each of these three modes.

To construct the distance between CFS regions, we follow Head andMayer (2009) and
construct the CFS distances as a CES combination of the population-weighted distances
between all of the constituent counties of each CFS region. This provides a better sense
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of both the distances between two different CFS regions as well as an internal distance for
each CFS region. Given our normalization of distances, we do not followHead andMayer
(2009) in assign each county a distance to itself based on its land area but simply set this
to the shortest such distance by each mode observed in the data.
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Table A.III: PPML Regression Output, Trade Value

(1) (2) (3) (4)
Trade Costs 1.156∗∗∗ 0.585∗∗∗ 0.852∗∗∗ 0.484∗∗∗

(0.0478) (0.0282) (0.0286) (0.0220)

Same state 2.157∗∗∗ 1.899∗∗∗
(0.0651) (0.0592)

SCI connection likelihood 192.3∗∗∗ 114.9∗∗∗
(14.98) (10.50)

Income difference -2.543∗∗∗ -2.267∗∗∗
(0.185) (0.160)

Race difference -2.562∗∗∗ -1.097∗∗∗
(0.179) (0.175)

Constant 9.850∗∗∗ 8.292∗∗∗ 10.27∗∗∗ 8.770∗∗∗
(0.0872) (0.0665) (0.0741) (0.0738)

Origin-Destination FEs Yes Yes Yes Yes
Observations 16641 16641 16641 16641
Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All specifications include origin and
destination FEs.
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θ vrd vrl vwa frl fwa

8.2684 1.0148 0.0001 0.3338 0.9714 0.9675

Table A.IV: The table shows the estimated parameter θ from the discrete choice estimation as in
Allen and Arkolakis (2014). The scaled trade costs recovered from the PPML regression given θ
are displayed in columns 2-6.

We estimate the relative trave costs as in Allen and Arkolakis (2014) by finding the
variable (for road, rail, and water) and fixed (for rail and water) costs that best rationalize
the observed mode shares. We then use these costs to estimate a PPML regression to
recover the parameter θ that allows us to calculate average geographic trade costs once
we set the elasticity σ = 5. We also estimate four “non-geographic” trade costs using
this regression. These are 1) the absolute value of the difference in log income between
the CFS regions, 2) the difference in the demographic norm between the two counties,
based on the six racial categories in the US census, 3) the Facebook Social Connectedness
Index between the two counties, which reflects their degree of existing connection in social
networks, and 4) an indicator for if the CFS regions are in the same state. The PPML
regression coefficients are given in Table A.III.

We use the results in column (5) to recover the values θ and the fixed and variable
trade costs, which gives us the parameter values in table XX. We use these trade costs
and the distances between all counties to construct a matrix of county-county trade costs.
The values generally half the size of those in the Allen and Arkolakis (2014) inversion,
reflecting the different value of σ we adopt. The largest difference is for rail, which has
a much smaller variable cost than estimated in the original Allen and Arkolakis (2014)
inversion.

Given these trade costs, we invert the model and recover the exogenous Ai and Ui for
each location, usingα = 0.03 and β = −1

3
. The distributions of the resulting fundamentals,

own-fundamentals Fi term, and market accessMi term are given in the main text.
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E Additional Details on Simulation

This section gives more details on the simulation. We first discuss the main simulation
and then discuss the version of the simulation where we vary parameter values.

E.1 Details on main simulation

To ensure that geographic trade costs respect the triangle inequality, wemodel settlements
as occurring randomly over a large surface and take the Euclidean distance between all
settlements. We take draws from uniform distributions with parameters [1, a] where a
reflects the maximal horizontal and vertical dimension of our full square geography. We
take draws until we have realized a set number of locations within the full geography.
Figure A.VI shows the locations in the center of our full geography to provide an example
of the realized “dartboard.” Using a dartboard geography is convenient because it allows
us to ensure trade costs respect the triangle inequality, ensures random variation in trade
costs, and obviates the need to calculate least-costs paths beyond taking the Euclidean
distance between points.

We simulate a large geography and take the central locations as the geography of in-
terest to limit the impact of border effects on the population distribution. We uniformly
distribute 10,000 settlements across a 1200-by-1200 grid and discard those within 100 cells
of a border. This leaves an expected number of settlements of 100

144
∗ 30000 = 7, 944.3̄. We

draw new randomly drawn fundamentals each simulation. We are left with a central ge-
ography consisting of approximately 7,000 settlements. We fix the distance across this
central geography to equal 1.

Fundamentals are drawn from lognormal distributionswith parameters as given in Ta-
ble I. We induce spatial correlation in the fundamentals using a Choleski decomposition.
We assume the degree of spatial correlation of the log-scale fundamental declines expo-
nentially, consistent with the empirical attribute correlations we show in Supplemental
Appendix C.6, so that ρij = e−δρdij . For j = i, this gives ρii = 1 as dii = 0. We set δρ = 50.
We allow the productivity and amenity fundamentals in a location to be correlated and
set the correlation betweenAi and Ui within each location i to ρAU = 0.18 to match the cor-
relation between the recovered productivity and amenity fundamentals in our empirical
inversion.

The magnitude of local productivity spillovers is given by α = 0.03, in line with the
estimates in Combes et al. (2008) and those surveyed in Rosenthal and Strange (2004)
and Combes and Gobillon (2015).The model contains an isomorphism which we use to
parameterize congestion costs. As discussed in Allen and Arkolakis (2014), the model is
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Figure A.VI:
Example of “Dartboard” Geography

Notes: The figure shows the middle settlements of our full geography to provide an example of how we
induce variation in trade costs.

isomorphic to one with a fixed quantity of housing where spending on housing is δ and
β = − δ

1−δ
. Congestion costs are parameterized to match a level of spending on housing

of 25% of income, which gives a congestion parameter of β = −1
3
, consistent with the

estimates in Combes et al. (2019) and Davis and Ortalo-Magné (2011).

E.2 Additional simulations: Varying Parameter Values

In the simulations for varying parameter values, we take all combinations of
α = [0.02, 0.04, 0.06, 0.08, 0.1], β = [−0.25,−0.30,−0.35,−0.40,−0.45,−0.50], and
δTC = [0.0005, 0.001, 0.0015, 0.002, 0.0025]. For each combination, we find the population
distribution for 100 draws of the exogenous geography in a grid of the same dimensions as
for our main results. We do not include idiosyncratic shocks to trade costs in this section,
and use only geographic trade costs such that τij = exp(δTC · dij), so that an unusual
realization of these costs does not influence the estimate. We set the number of locations
in the full geography to 10,000.

We here report the full table of estimated parameter values for three values of δTC , at
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0.5, 1.5, and 2.5. When increasing α, the coefficient tends to increase (flatter slope). When
increasing β, the coefficient tends to decrease (steeper slope). When increasing δTC , the
coefficient tends to increase (flatter slope). As can be seen in Tables A.V (showing average
coefficients) and A.VI (showing median coefficients) the change is nearly always in the
anticipated direction.

To get the comparative statics reported in Table III, using the average estimated co-
efficient θ̂i from each of the 150 combinations of parameters we estimate the following
regression:

θ̂i = ψ1αi + ψ2βi + ψ3δTC,i + ϵi (30)

where the estimated coefficients ψ̂1, ψ̂2, and ψ̂3 are estimates of ∂θ1
∂α

, ∂θ1
∂β

, and ∂θ1
∂θ

, respec-
tively. The signs of these coefficients are reflected in Table III, and the full regression out-
put is included in Table A.VII.

Notably, the estimated coefficients are consistently in the neighborhood of -1 through-
out the parameter spacewe simulate here. Given alternative truncations of the distribution
(either expanding or reducing the number of locations included, as discussed in Gibrat
(1931)) achieving a -1 slope is likely possible for most of these parameter combinations.
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Table A.V: Changes to Mean Power Law Coefficient through Model Parameters

Panel A: δTC = 0.0005

β = 0.25 β = 0.30 β = 0.35 β = 0.40 β = 0.45 β = 0.50

α = 0.02 –0.750 –0.842 –0.928 –1.013 –1.109 –1.181
(0.034) (0.030) (0.036) (0.043) (0.035) (0.046)

α = 0.04 –0.718 –0.813 –0.899 –0.980 –1.075 –1.152
(0.027) (0.032) (0.037) (0.036) (0.044) (0.040)

α = 0.06 –0.696 –0.778 –0.875 –0.953 –1.050 –1.134
(0.029) (0.030) (0.034) (0.039) (0.035) (0.050)

α = 0.08 –0.665 –0.757 –0.841 –0.928 –1.014 –1.101
(0.026) (0.028) (0.035) (0.042) (0.038) (0.042)

α = 0.10 –0.640 –0.724 –0.819 –0.899 –0.990 –1.072
(0.029) (0.029) (0.029) (0.036) (0.036) (0.041)

Panel B: δTC = 0.0015

β = -0.25 β = -0.30 β = -0.35 β = -0.40 β = -0.45 β = -0.50

α = 0.02 –0.736 –0.828 –0.917 –1.002 –1.091 –1.183
(0.032) (0.032) (0.038) (0.038) (0.041) (0.051)

α = 0.04 –0.708 –0.794 –0.886 –0.969 –1.052 –1.142
(0.032) (0.032) (0.037) (0.042) (0.042) (0.046)

α = 0.06 –0.683 –0.769 –0.852 –0.942 –1.025 –1.116
(0.032) (0.037) (0.036) (0.038) (0.043) (0.045)

α = 0.08 –0.640 –0.738 –0.827 –0.918 –1.008 –1.094
(0.030) (0.031) (0.032) (0.041) (0.043) (0.043)

α = 0.10 –0.614 –0.711 –0.799 –0.889 –0.977 –1.066
(0.035) (0.030) (0.037) (0.036) (0.040) (0.040)

Panel C: δTC = 0.0025

β = -0.25 β = -0.30 β = -0.35 β = -0.40 β = -0.45 β = -0.50

α = 0.02 –0.714 –0.811 –0.901 –0.982 –1.080 –1.166
(0.047) (0.035) (0.039) (0.043) (0.046) (0.046)

α = 0.04 –0.688 –0.772 –0.863 –0.959 –1.044 –1.127
(0.033) (0.035) (0.038) (0.038) (0.045) (0.049)

α = 0.06 –0.657 –0.747 –0.830 –0.922 –1.021 –1.106
(0.034) (0.033) (0.041) (0.038) (0.047) (0.051)

α = 0.08 –0.624 –0.717 –0.804 –0.886 –0.986 –1.075
(0.032) (0.035) (0.035) (0.034) (0.041) (0.050)

α = 0.10 –0.593 –0.683 –0.776 –0.867 –0.954 –1.044
(0.034) (0.032) (0.034) (0.042) (0.035) (0.042)

Notes: Table containing the average coefficient over 100 simulations on the exogenous geography. The stan-
dard deviation of the estimated coefficient over the 100 simulations is in parenthesis.
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Table A.VI: Changes to Median Power Law Coefficient through Model Parameters

Panel A: δTC = 0.0005

β = -0.25 β = -0.30 β = -0.35 β = -0.40 β = -0.45 β = -0.50

α = 0.02 –0.748 –0.850 –0.928 –1.023 –1.113 –1.191
α = 0.04 –0.719 –0.813 –0.903 –0.986 –1.077 –1.156
α = 0.06 –0.703 –0.789 –0.879 –0.955 –1.051 –1.139
α = 0.08 –0.672 –0.763 –0.851 –0.930 –1.019 –1.109
α = 0.10 –0.648 –0.725 –0.823 –0.904 –0.993 –1.078

Panel B: δTC = 0.0015

β = -0.25 β = -0.30 β = -0.35 β = -0.40 β = -0.45 β = -0.50

α = 0.02 –0.742 –0.833 –0.918 –1.004 –1.093 –1.190
α = 0.04 –0.714 –0.790 –0.898 –0.976 –1.057 –1.151
α = 0.06 –0.689 –0.770 –0.859 –0.951 –1.027 –1.119
α = 0.08 –0.658 –0.741 –0.829 –0.932 –1.015 –1.100
α = 0.10 –0.618 –0.713 –0.801 –0.900 –0.987 –1.075

Panel C: δTC = 0.0025

β = -0.25 β = -0.30 β = -0.35 β = -0.40 β = -0.45 β = -0.50

α = 0.02 –0.733 –0.817 –0.903 –0.992 –1.089 –1.170
α = 0.04 –0.697 –0.765 –0.865 –0.965 –1.046 –1.141
α = 0.06 –0.671 –0.756 –0.830 –0.925 –1.027 –1.117
α = 0.08 –0.610 –0.728 –0.808 –0.895 –0.996 –1.089
α = 0.10 –0.601 –0.692 –0.783 –0.881 –0.957 –1.061

Notes: Table containing the median coefficient over 100 simulations on the exogenous geography.

Table A.VII: Estimated Coefficients from Regression 30

(1)
α 1.449***

(0.0131)

β 1.769***
(0.00433)

δTC 16.72***
(0.523)

adj. R2 0.999
N 150
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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